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• We automatically compute a set of knots that enable low error approximation for smooth datasets.
• Our algorithm is fast, run-time scaling linearly with the input data size.
• We can give a good estimate of the number of knots needed for a given error threshold.
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A B S T R A C T
The choice of knot vector has immense influence on the resulting accuracy of a B-spline approximation
of a curve. However, despite the significance of this problem and the various solutions that were
proposed in the literature, optimizing the number and placement of knots remains a difficult task.
This paper presents a novel method for the approximation of a curve by a B-spline of arbitrary order,
which automatically determines a knot vector that achieves high approximation quality. At the core of
our approach is a feature function that characterizes the amount and spatial distribution of geometric
details in the input curve by estimating its derivatives. Knots are then selected in such a way as to
evenly distribute the feature contents across their intervals. A comparison to the state of the art for
a wide variety of curves shows that our method is faster and achieves more accurate reconstruction
results, while typically reducing the number of necessary knots.

1. Introduction
Curve fitting using B-splines is a fundamental problem

in many applications such as computer-aided design (CAD),
geometric modeling, and reverse engineering [9, 29]. High-
accuracy fitting is also being explored in data analysis and
compression for large scale simulations [21]. The problem
of B-spline curve fitting involves finding a B-spline curve
that minimizes the least squares error between a sequence of
input data points and the fitted spline [22, 19]. In this type of
fitting problem, variables include the order of the B-spline,
the number of knots, the knot locations, and the control point
values.

Often, a uniform knot vector with a predetermined num-
ber of knots is used. Fixing the knot vector and optimizing
only the control points reduces the B-spline fitting problem
to a linear least squares problem. However, using uniform
knots may fail to capture details of the input dataset. In con-
trast, solving for the knot vector in addition to the control
points can improve the fitting result dramatically [10], lead-
ing to the problem of knot optimization.

Knot optimization consists of finding the placement of
as few knots as possible for a B-spline curve that fits some
desired approximation error criterion. This is a challenging
problem for two reasons. First, the unknown number and lo-
cations of knots result in a large and nonlinear optimization
problem, which is computationally difficult. Second, ana-
lytic expressions for optimal knot locations, or even for gen-
eral characteristics of optimal knot distributions for a desired
error criterion, are not easy to derive [10].

In this work, we use the derivatives of the input data
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to calculate a feature function that captures the amount and
distribution of detail in the data, where higher feature val-
ues indicate that a higher knot density is needed to capture
the detail and reach the desired approximation error toler-
ance. Using the cumulative distribution function (CDF) of
the feature function, interior knots are distributed, such that
higher feature values result in more knots. This approach af-
fords the fitted B-spline more flexibility in those locations,
thereby reducing the approximation error. Figure 1 shows
an overview of our knot placement method for an approx-
imation using an order-3 B-spline. Given an input dataset
(Fig. 1a) and its third derivative (Fig. 1b), our method calcu-
lates a CDF of the feature function (Fig. 1c) using the third
derivative. Knot locations, indicated by the black triangles,
are determined by a set amount of variation of the feature
function (Fig. 1d). The approximation is solved using the
resulting knot vector, successfully capturing the detail of the
input data points (Fig. 1e).

Our approach works for 1-dimensional input data and
parametric curves in 2 or higher dimensions. It is fast and
produces high accuracy approximation for a wide range of
input data that are smooth and sampled densely enough for
high-order derivatives to be estimated from the data. The
order of the derivatives depends on the order of the B-spline
used for the approximation. The knot placement method
works for a B-spline approximation of any order, with the
resulting approximation error close to a user-supplied target
error.

The remainder of the paper starts with a presentation of
related work in Section 2. Section 3 briefly reviews technical
details of B-spline approximation. We present our method
in Section 4, and compare it with prior work in Section 5.
Finally, conclusions are drawn, and future work is discussed
in Section 6.
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(e) Resulting approximation

Figure 1: Overview of our method using order-3 B-spline to approximate an input data.

2. Related Work
Knot optimization for B-spline fitting is a well studied

topic. Many approaches can be found in the literature. Piegl
and Tiller [22] proposed their new knot placement method
(NKTP) that places knots with averages of representative
parameters for groups of input points. This leads to a sta-
ble system of equations and a uniform distribution of knots
along the parameter domain. Liang et al. [14] describe an it-
erative knot insertion (IKI) method that starts with the fewest
knots possible, finds knot segments whose approximation er-
ror is higher than a given error tolerance, and adds a new knot
in the middle of these segments. Dung and Tjahjowidodo
[5] propose a fast method for knot placement that locally
searches for the largest knot spans under an error threshold
using binary search. This method is fast and uses few knots,
but often produces a discontinuous approximation. Knot re-
moval techniques start with a set of dense knots, and iter-
atively remove knots while maintaining the approximation
tolerance [18, 17].

Jupp [10] and Loach and Wathen [15] describe local op-
timization techniques that transform the constrained opti-
mization problem into an unconstrained problem; then a lo-
cal gradient-based or Gauss-Newton method is employed for
minimization. Global optimization can avoid the drawbacks
of local methods, but it is computationally more expensive
[2].

Kang et al. [11] and Loock et al. [16] treat knot place-
ment as a convex optimization problem, where the norm of
jump of the (p−1)th derivative of a p-order B-spline is min-
imized. These optimization methods compute the number
and positions of the knots simultaneously and achieve low
approximation error with few knots, but are typically com-
putationally more expensive than other approaches.

A machine learning approach using support vector ma-
chines for knot placement is described by Laube et al. [12].
The performance of their approach depends strongly on the
training dataset, limiting the applicability to a different dataset
than the training dataset. Yuan et al. [33] select knots by
extracting optimal subsets from a multiresolution B-spline
basis using regression analysis.

There also exists a body of work using genetic algorithms
for knot vector optimization [32, 25, 28, 34, 27], meta-heuristics
such as the firefly algorithm [7], and elitist clonal selections
[8]. Such methods are typically computationally expensive,
and often produce globally suboptimal solutions.

Another body of literature proposes heuristic methods
that use specific properties of the input dataset to guide knot
placement. Curvature, in particular, is a widely-used crite-
rion in heuristic methods. Park and Lee [20] select knots
using dominant points, which are points of interest of the in-
put dataset. Initial dominant points are set to points of high
curvature; then, additional dominant points are added in seg-
ments of high approximation error using the input data cur-
vature. Li et al. [13] place initial knots at zero crossings of
the curvature, then iteratively add new knots to balance the
integral of curvature of the new knot segments. Aguilar et al.
[1] use curvature peaks as initial knots, then iteratively add
new knots or adjust existing knots to reduce curvature devia-
tion. Razdan [24] uses curvature and arc length of the input
dataset to select points of interest, and construct the B-spline
approximation by interpolating those points. This interpola-
tion, however, only used the points of interest and does not
take into account the points that were not chosen, which can
lead to overall higher error.

Derivatives are also used by some heuristic methods for
knot placement. Corresponding techniques approximate the
derivatives of the input data using a piecewise low-order
polynomial function; the connecting points of the piecewise
polynomial are then used as knot locations. Tjahjowidodo
et al. [26] find knots for a cubic B-spline approximation by
using piecewise linear approximation of the second deriva-
tive of the input data. Conti et al. [4] find a smooth fit of
noisy input data, calculate the third derivative of the smooth
fit, and find the piecewise constant approximation of the deriva-
tive.

Finally, other heuristic methods use wavelet decomposi-
tion [30].

Though our work also follows a heuristic approach using
the derivatives of the input dataset, it produces more accu-
rate approximation in a shorter time compared to the existing
heuristic approaches, as we will show in Section 5.

3. Preliminary
We review the basics of B-spline in this section, and refer

interested readers to Farin [6] for more in-depth material.
A B-spline of order p is a piecewise polynomial function

of order p (degree p−1) with n control points, and is defined
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Figure 2: Points sampled from a quadratic (order-3) B-spline
and the first two derivatives. The knots, represented by black
triangles, mark the derivative’s discontinuities.

by

C(u) =
n
∑

i=1
Ni,p(u)Pi, u ∈

[

tp, tn+1
]

, (1)

where C(u) is the B-spline curve at parameter location u, Piare the control points, andNi,p are the pth order B-spline ba-
sis functions defined over the knot vector T =

{

t1, t2,… , tn+p
}.

We define our B-spline knot vector with clamping, so the
first and last p knots are the same, that is, t1 = t2 = ⋯ = tpand tn+1 = tn+2 = ⋯ = tn+p. The B-spline basis function is
defined recursively as

Ni,1(u) =
{

1 if ti ≤ u < ti+1
0 otherwise

Ni,p(u) =
u−ti
ti+p−ti

Ni,p−1(u) +
ti+p+1−u
ti+p+1−ti+1

Ni+1,p−1(u).
(2)

The (p − 1)th derivative of an order-p B-spline is piece-
wise constant. Discontinuities in its derivative coincide with
the knot locations of the B-spline. Figure 2 shows an order-
3 B-spline and its first two derivatives, with knots indicated
by triangles at the bottom. The first derivative is piecewise
linear, and the second derivative is piecewise constant.

We consider a sequence ofm input data pointsQ =
{

qi ∶
qi ∈ ℝd}m

i=1 with parameterization U =
{

ui ∶ ui ∈ ℝ
}m
i=1,where each ui is a parameter for qi, and ui < ui+1. For

points in 1D space (d = 1), qi = yi, and for points in
2D space (d = 2), qi =

(

xi, yi
). Parameters for 1D data

points are typically given. For points in 2D space, we cal-
culate the parameters for each point using their chord length
cj =

√

(xj − xj−1)2 + (yj − yj−1)2 for j > 1. Then the
parameters go from 0 to 1, and are defined as u1 = 0 and
ui =

∑i
j=2 cj∕

∑m
j=2 cj for i = 2, ..., m.

The B-spline approximation of a set of input points is
found in the least squares sense by minimizing the 2-norm
of the approximation error:

argmin
P

m
∑

j=1

‖

‖

‖

qi − C(ui)
‖

‖

‖2
(3)

Given the knot vector T, the control points Pi of the B-spline
curve C can be found by solving a linear least squares sys-
tem.

The accuracy of the approximation can be measured by
normalized max error

Emax =
1

Qrng
max
i

‖

‖

qi − C(ui)‖‖2 (4)

or normalized root mean squared error

ERMS =
1

Qrng

√

√

√

√

1
m

m
∑

i=1

(

qi − C(ui)
)2 (5)

where Qrng is the range of the data. For 1D input data,
Qrng = yrng, and for 2D input data, Qrng it is the maxi-
mum length of an edge of the axis-aligned bounding box,
Qrng = max

(

xrng, yrng
), with xrng = xmax − xmin, and

yrng = ymax − ymin.

4. Methodology
Our work is motivated by the idea that an order-p B-

spline has a piecewise constant (p − 1)th derivative, where
derivative discontinuities mark the knot locations, as shown
in Figure 2. Given a set of points sampled from an order-
p B-spline, one can recover the original B-spline knots by
locating the discontinuities in the (p − 1)th derivative. In
practice, the input data points will not be sampled from a B-
spline, and will not, in general, have distinct discontinuities
in their derivatives. Nonetheless, we show in the following
that the derivative information of the input data can be used
to guide the knot placement such that resulting knots align
with the properties of the input data, thus yielding a better
approximation.

Figure 3a shows an example input dataset and its grad-
ually increasing second derivative. More knots are needed
on the right side to reduce the approximation error where
second derivative is steeper. A knot placement method that
does not take the data complexity into account and allocates
knots uniformly (such as the NKTP method [23]) will result
in insufficient knots on the right side, and therefore exhibit
higher error there (as shown in Figure 3c with the NKTP
method).

Using the (p − 1)th derivative directly does not solve
this problem either. Figure 3b shows a piecewise constant
function approximating the second derivative such that the
maximum absolute difference between the derivative and the
piecewise constant function is minimized. The knots are
derived from the breakpoints of the piecewise constant ap-
proximation. Similar ideas were attempted in prior work
[4, 26]. The right plot in Figure 3b shows the approxima-
tion error, where higher error occurred on the left while most
knots gather on the right side where the second derivative is
steeper.

In this work, instead of using the (p − 1)th derivative
directly, we calculate a feature function (Section 4.2) that
better captures the amount of detail present throughout the
dataset. We then place knots such that each knot segment has
the same integral of the feature function (Section 4.3). Fig-
ure 3d shows the approximation of the same dataset using
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(a) Left: Input data. Right: Second derivative that
gets increasingly steeper.
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(b) Left: Four constant functions (blue) approximate the second derivative (black).
Knots are set to be the breakpoints of the blue lines. Middle: Approximation using
those knots. Right: Resulting error.
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(c) Left: Approximation using NKTP knot placement
method. Right: The resulting approximation error.
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(d) Left: Four constant functions (blue) approximates the cumulative feature func-
tion (black). Knots are placed at the breakpoints of the blue lines. Middle: Resulting
approximation. Right: Approximation error.

Figure 3: Demonstration of different knot placement methods. The approximated curve is red. The knots used are indicated by
black triangles. Each approximation uses the same number of knots, varying only the location of the interior knots.

our method. The resulting approximation exhibits an error
that is evenly spread across the domain, producing a higher
accuracy approximation using the same number of knots.

Following this idea, our approach for finding the knot
vector for B-spline curve fitting is comprised of the follow-
ing steps:

1. Calculate the derivatives of the input data.
2. Calculate a feature curve for the input data.
3. Determine a parameter that decides the number of knots

to use.
4. Adjust the feature curve to avoid a rank deficient sys-

tem.
5. Determine the knot vector using the feature curve.
6. Use least squares minimization to obtain a B-spline

approximation of the input data.
The above steps are explained in greater detail below.

4.1. Derivative Calculation
We use central differences to calculate an approximation

of the derivatives of the input points. Central differences
is second-order accurate in the parameter spacing. With a
given set of m input points Q =

{

qi ∶ qi ∈ ℝd}m
i=1 and pa-

rametersU =
{

ui ∶ ui ∈ ℝ, ui < ui+1
}m
i=1, we defineQ(k) =

{

q(k)j ∈ ℝd}m−k
j=1 to be the set that approximates ktℎ deriva-

tives of the input points at parametersU (k) = {

u(k)j ∈ ℝ
}m−k
j=1 .

We let Q(0) = Q, U (0) = U , then for k > 0, we use central

Figure 4: Example of derivative calculation. The parameter
location of each derivative value is the midpoint of two points
from the previous level, as indicated by the blue dashed arrows.

differences to find q(p)j

q(k+1)j =
q(k)j+1 − q

(k)
j

u(k)j+1 − u
(k)
j

(6)
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Figure 6: Placement of knots using the cumulative feature function F

with parameter

u(k+1)j = 1
2

(

u(k)j + u(k)j+1
)

. (7)

Note that each level of derivatives has its own set of param-
eters, which are midpoints of the parameters of the previous
level derivatives.

Figure 4 shows an example of calculating the first and
second derivatives of the starting segment of a dataset.

Other methods of derivative calculations can also be ap-
plied here. In fact, if the analytical derivatives are known,
the proposed method will automatically benefit from the ad-
ditional accuracy.

Care must be taken when calculating derivatives of noisy
data because differentiation in general, and central differ-
ences in particular, are known to amplify the noise. How-
ever, the present work does not consider the specific issue
of fitting noisy data, a problem for which different solutions
have been proposed. For instance, Conti et al. [4] fit a smooth-
ing B-spline with dense knots to the noisy input data, and
estimate the derivatives using the smoothing B-spline.
4.2. Calculating Feature Function

The feature function f (u) measures the amount of detail
in the input data points, and is later used for knot placement
in the B-spline approximation step. The feature function is
defined using a set of feature points

{

fi
}, calculated from

the pth derivative of the input dataset via a normalization

function Φ, where p is the order of B-spline used to approx-
imate the data.

We define the set of feature points {fi
} at parameter lo-

cations {ūi
}, 0 ≤ i ≤ m − p + 1, as

(

ūi, fi
)

=

⎧

⎪

⎨

⎪

⎩

(

u1, 0
)

, i = 0
(

u(p)i ,Φ
(

‖

‖

‖

q(p)i
‖

‖

‖2

))

, 1 ≤ i ≤ m − p
(

um, 0
)

, i = m − p + 1
(8)

We take the magnitude of the pth derivatives of the input
data points, and use a normalization function Φ to balance
the knot distribution and prevent the case in Figure 3b, where
too many knots are allocated at steeper derivatives.

Empirically, we find that defining Φ to be the pth root of
the pth derivative produces the best error distribution. Thus,
the definition of fi for i = 1,… , m − p is

fi =
(

‖

‖

‖

q(p)i
‖

‖

‖2

)1∕p
. (9)

Then we define the continuous feature function f (u) to be
the piecewise linear interpolant of the set of feature {fi

}. In
other words, for parameter u where ūi ≤ u ≤ ūi+1,

f (u) =
u − ūi+1
ūi − ūi+1

fi +
u − ūi
ūi+1 − ūi

fi+1 (10)

for i = 0,… , m − p + 1, and f (u) = 0 for u outside of the
range [ū0, ūm−p+1

].
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The feature function f (u) represents the amount of detail
at parameter location u. The higher the value of f (u), the
smaller the knot span at the parameter location u.

Figures 5a to 5c show the feature set calculation process
for a sample input. For an order-3 B-spline approximation,
the third derivative is calculated in Figure 5b, and the feature
function is shown in Figure 5c. The cumulative curve of
Figure 5d is described in the next subsection.
4.3. Knot Placement

We now consider the problem of how to distribute the
knots using the feature function f (u).

We want to place knots such that the integral of f over
each knot span is the same. To do so, we calculate F (u), the
cumulative distribution function (CDF) of f (u).

F (u) = ∫

u

−∞
f (v) dv, (11)

which is equivalent to F being a linear interpolant of the set
{

Fi
} at parameter locations {ūi

}, 0 ≤ i ≤ m− p+ 1, where
F0 = 0, and

Fi =
i

∑

j=1
fj,trap. (12)

for i = 1,… , m − p + 1, and fj,trap. is the finite integral
approximation of f (u) between ūj−1 and ūj calculated using
the trapezoid rule

fj,trap. =
1
2

(

fj + fj−1
)(

ūj − ūj−1
)

. (13)

Since F is a cumulative distribution function of the non-
negative function f ,F starts from zero and is non-decreasing.

Figure 5d shows the cumulative feature function F cal-
culated from the feature function f shown in Figure 5c.

Next, we define F−1 as the inverse of F such that
F−1(q) = u ⇔ F (u) = q. (14)

The inverse function F−1 is well defined if the values {Fi
}

are monotonically increasing, which may not be the case if
there are consecutive zeroes in {

fi
}. For the cases where F

contains flat spots, we can add a small positive value � to the
integration

fj,trap. =
1
2

(

fj + fj−1 + �
)(

u(p)j−1 − u
(p)
j

)

(15)

to ensure that{Fi
} and thereforeF is monotonically increas-

ing, and F−1 is uniquely defined in the whole domain.
With F−1 defined, we can now find the knot locations.

With knot clamping, the first and last knots are repeated p
times. The knot vector T contains r unique knots, and is
defined as

T =
{

k1,… , k1
⏟⏞⏞⏟⏞⏞⏟

p

, k2,… , kr−1, kr,… , kr
⏟⏞⏞⏟⏞⏞⏟

p

} (16)

where the range of the knots is the same as the range of the
input data parameter, that is, k1 = u1 and kr = um.

We find the locations of the r unique knots {k1, ..., kr
}

with
ki = F−1

(

(i − 1)ΔF
) (17)

where ΔF is the amount of integrated feature per knot seg-
ment. The selection of ΔF determines the number of knots
used and the resulting accuracy of the approximation. A
smaller ΔF results in greater number of knots with shorter
knot spans and a higher approximation accuracy, and con-
versely for larger ΔF . This knot placement ensures that
each knot span has the same amount of increase in F ; i. e.,
F (ki+1) − F (ki) = ΔF for all i.

Figure 6a shows the cumulative feature function F split
into equal ΔF steps with horizontal dashed lines. The knot
locations are shown on the x-axis. If we know r, the num-
ber of unique knots, in advance, we can calculate ΔF =
Fmax∕(r − 1), where Fmax is the largest value in F . Oth-
erwise, the selection of ΔF is discussed in Section 4.5.

After the knot vector is acquired, the fitting B-spline can
be solved with Eq. (3).

Figure 6b shows the approximation using the acquired
knot vector, and Figure 6c shows the resulting approximation
error of our method (top) compared with the approximation
error using the NKTP method [23] (bottom).
4.4. Limiting Knot Density

There may be cases where the resulting knot vector has
smaller knot spans than the input data point spacing. This
can occur when some part of the cumulative feature func-
tion F increases too quickly, resulting in knots placed too
close together with the given ΔF . This could result in a
rank-deficient least squares system and an inefficient usage
of knots.

We prevent this situation by ensuring that knots are not
placed too closely to each other by imposing the condition

Fi − Fi−1 ≤ ΔF (18)
for all i. We achieve this by limiting Fi to be

Fi =
i

∑

j=1
min

(

ΔF , fj,trap.
)

. (19)

We then proceed to place knots as described in Section 4.3.
Figure 7 shows an input dataset sampled from a cosine

function, with sparse samples toward the right. Below the
cosine plot are the input point parameters shown as vertical
bars. Blue downward triangles are knots placed before the
adjustment, and red upward triangles are the knots created
from the adjusted F function. The pre- and post-adjustment
knots match on the left side of the plot where the density
of the input points is high enough for the knot density; but
on the right side, the pre-adjusted knots are denser than the
input points. The post-adjusted knots account for the input
point spacing.
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Figure 7: Input data with nonuniform spacing. Blue triangles indicate old unadjusted knots. Red triangles are adjusted knots.
Black bars between the triangles indicate input spacing. At the right side the new knots (red) are adjusted to match the spacing
of the input points, whereas old knots (blue) are more densely placed, causing rank deficiency in the least squares system.
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Figure 8: Finite integral approximation fj,trap. and the ΔF line
that shows the cutoff to prevent a rank-deficient system. All
fj,trap. above the cutoff are circled.
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Figure 9: The plot of min(fj,trap.,ΔF ).

Figure 8 shows the finite integral approximation {fj,trap.}of the input data’s feature function and the chosen ΔF . The
fj,trap. points over the ΔF value are circled. Figure 9 shows
the finite integral approximation {fj,trap.} limited by theΔF
value, and Figure 10 shows the adjusted cumulative feature
function F compared with the pre-adjusted F .
4.5. Determining Number of Knots

During the placement of knots,ΔF determines the num-
ber of knots used. However, usually users do not know how
to setΔF or the number of knots for a desired approximation
quality.

In our knot placement method, we approximate the num-
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Figure 10: The old and new cumulative feature functions G
diverge where fj,trap. exceeds ΔF .
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Figure 11: Plot of ΔF value against RMS error for 10 datasets
with 5 different B-spline orders. Lines are fitted via linear
regression in the log-log space. The slope of each line is �.

ber of knots needed for a desired target error by using regres-
sion to find the relationship between the approximation error
and ΔF for a specific order-p B-spline.

We tested 10 randomly generated 1D order-9 nonuni-
form rational B-spline (NURBS) datasets, with random con-
trol points, weights, and number of knots ranging from 10 to
40 with randomized knot locations. The range of number of
knots results in various feature functions F for each dataset.
We use a range of ΔF and B-spline degrees to approximate
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Figure 12: Target error vs. resulting error using three different B-spline orders for 32 randomly generated datasets. Number of
knots used for each approximation is color-coded.

these datasets. Figure 11 plots, in log-log scale, the result-
ing RMS error of these approximations against theΔF value
used, with a different color for each degree of B-spline used.
Exponential convergence can be observed from the plot.

For each order of B-spline, we fitted the data points per-
taining to the order in log-log space with the line

y = �x + � (20)
where y is the log of the RMS error, x is the log of ΔF ; �
is the slope of the line, and � is the y-intercept of the line
for the order-p B-spline. We solve for the unknowns � and �
using linear least squares to minimize the fitting error in the
log-log space for each B-spline order. Then given a desired
B-spline order p and the desired target approximation RMS
error e, we can approximate ΔF with ΔF = 10(log(e)−�)∕� .

We evaluate the line model with 32 randomly generated
NURBS datasets, different from the 10 datasets used in the
regression. The 32 datasets are of order 7 to 10, contain
4000 points, with number of knots in the range of 10 to 60,
with random knot locations, control points, and weights. We
check the correlation between the input desired tolerance and
the actual deviation error for order-3, 4, and 5 B-splines in
the correlation plots in Figure 12. The x=y line is drawn for
reference to see how close the resulting error is to the target
error. Each approximation point is colored by the number of
knots used. Points below the line indicate a resulting error
lower than the target error, whereas points above indicate a
resulting error higher than the target error.

The resulting error matches the target error for the most
part, except toward the lower error, where a faster conver-
gence is observed for quadratic B-spline, and similarly but
less noticeably for the other two higher order B-splines. The
drop of resulting error is caused by the number of knots ap-
proaching the number of input points in each data sets, re-
sulting in interpolation of the input datasets. The lowest er-
rors are around 10−16, limited by machine precision.

The integral of the feature function f (in other words,
Fmax, the maximum value in F ) can be thought of as a mea-
sure of how complicated the input data are. The more com-
plicated the input data are, the more knots should be used to
achieve the same error threshold.

Table 1
Table of all Methods

Ref. Label Descriptions

Our Instant; derivative-guided
[22] NKTP Instant; parameter-only
[14] IKI Iterative
[26] LinFit Locally iterative; derivative-guided
[4] ConFit Locally iterative; derivative-guided
[1] AdpCrv Locally iterative; curvature-guided
[20] DOM Iterative; curvature-guided

This is a heuristic linear regression to guide the choice of
the number of knots given a desired error tolerance. It uses a
small number of datasets with similar characteristics as the
target data, and does not guarantee the resulting approxima-
tion error to be under the tolerance. The linear regression
model can be improved upon with more sophisticated ma-
chine learning approaches that generalize to a wider variety
of datasets.

5. Experimental Results
The performance of our knot placement algorithm was

tested against six prior works. We implemented each of the
other methods in MATLAB.

Table 1 lists the algorithms, their labels used in the com-
parison plots, and the main idea of each method. “Instant”
refers to placing knots without any iterative process. “Iter-
ative” indicates that a repeated adjustment of the knots is
done to improve the approximation. “Locally iterative” in-
dicates that, at each iteration, a small local system is solved,
whereas (globally) iterative methods solve the fitting equa-
tion (Eq. (3)) at each iteration. “Parameter-only” refers to
methods that only use the parameter information to place
knots. These methods do not take into account features of
the input data. “Derivative-guided” methods use the deriva-
tive information to place knots, whereas “curvature-guided”
methods make use of the curvature information. "Our" refers
to the method in this paper. Tjahjowidodo et al. [26] use
piecewise linear polynomial to fit the second derivative, hence
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Figure 13: Methods comparison for 801 1D input points uniformly sampled from a cosine with increasing frequency.
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Figure 14: Methods comparison for 501 1D input points sampled nonuniformly from a randomly generated NURBS curve.
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Figure 15: Approximating a NURBS curve using our knot
placement method with 26 knots.

their method is dubbed LinFit. Similarly, Conti et al. [4] use
piecewise constants to fit the third derivative, and we refer
to their method as ConFit. The method by Aguilar et al. [1]
is adaptive curvature guided (AdpCrv), and the method by
Park and Lee [20] uses dominant points (DOM).

The IKI method [14] refines from a starting knot vector.
To prevent the starting knots from influencing the result, our
implementation of the IKI method starts with knots only at
the end points.

The discrete derivatives discussed in Section 4.1 were
used for our method for all datasets. Our input data are

free of noise generally, but datasets with varying parame-
ter spacing would result in noise in the derivative compu-
tation. Therefore, for some of the other methods that are
more sensitive to the smoothness of the derivative and cur-
vature calculation, we calculate the derivatives by fitting a
cubic smoothing spline over the data. The fitted spline is
then used to calculate the approximate derivatives and cur-
vature of the data. We use MATLAB csaps function for the
cubic smoothing spline. For AdpCrv and DOM methods,
datasets with varying spacing (Figure 14a and 19a) and the
simulation dataset (Figure 16a) used the smoothing weight
of 10−5. For the ConFit method, the smoothing weight used
is 10−8 for all 1D datasets.

Some of the methods only work with cubic B-splines
(order-4); thus, we use cubic B-splines in our experiments
to match these methods. However, note that our knot place-
ment method works for B-splines of any order.
5.1. Approximation Error

In each example case, the input points are plotted first
(a), followed by the maximum error (b) and the root mean
squared error (c), plotted against the number of knots used.
Each method was run 15 times with different numbers of
knots, and the resulting approximations were evaluated. The
two exceptions are DOM and ConFit methods. Those meth-
ods add one knot at each iteration until a target number of
knots is reached. Therefore, the plots for those methods
show the progression of error as each knot is added.
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Figure 16: Methods comparison for 704 1D input points taken from a slice of 3D simulation data.

0 0.2 0.4 0.6 0.8 1

Parameter

0

0.2

0.4

0.6

0.8

1

V
a
lu

e

(a) Input 1D data

100 200 300 400 500 600

Number of knots

10-6

10-4

10-2

M
a
x
 E

rr
o
r

Our method

NKTP

IKI

LinFit

ConFit

AdpCrv

(b) Max error

100 200 300 400 500 600

Number of knots

10-6

10-4

10-2

R
M

S
 E

rr
o
r

Our method

NKTP

IKI

LinFit

ConFit

AdpCrv

(c) Root mean squared error

Figure 17: Methods comparison for a 1D randomly generated NURBS with 4000 points.

The test cases are selected to include a range of fitting
complexity, with varying amount of detail. Of the eight datasets,
the first four are 1D signals, and the other four are paramet-
ric curves. Test datasets are comprised of a combination of
synthetic and actual scientific data. Some of the synthetic
datasets are generated using high-order NURBS with ran-
domly distributed control points, knots, and weights, such
that the data cannot be exactly represented using the approx-
imating B-splines.
5.1.1. 1D datasets

Figures 13 to 17 compare the approximation results for
the four 1D datasets, using all methods except the DOM
method, as DOM is described only for parametric curves.

The first dataset shown in Figure 13a corresponds to 801
points sampled from a cosine wave with increasing frequency,
resulting in progressively higher frequency oscillation to-
ward the right side of the data. More knots need to be al-
located toward the right to accurately capture the data. As
can be seen from the maximum and RMS error plots (Fig-
ure 13b and 13c), our method achieves the lowest error for
all tested number of knots, followed by the IKI method. The
other four methods have higher error for the tested number
of knots. The NKTP method does not allocate enough knots
toward the right hand side to lower the error sufficiently. The
drop at 54 knots for the NKTP method occurs when the knot
density is high enough to fit the shape of the right-most oscil-
lation. On the other hand, the three other heuristic methods,

LinFit, ConFit, and AdpCrv methods, place too many knots
toward the right side, which quickly increases the number of
knots without reducing the approximation error on the left
side. Sharp drops in error for the ConFit method occur when
knots are added toward the right side.

The second dataset shown in Figure 14a corresponds to
501 points sampled from a randomly generated NURBS curve
of order 6 with 30 knots. The control points, knot locations,
and weights are randomly generated. The points are sampled
with randomly varying point spacing, as shown in the zoom-
in plot. This dataset contains a smooth curve with a sharp
dip around parameter value 0.2. Figure 15 shows the approx-
imation result using our method and the knot placement with
26 knots. Figures 14b and 14c show the approximation er-
ror of all the methods with different numbers of knots. Our
method achieves the lowest approximation error for all num-
bers of knots. The iterative IKI method reaches the second
lowest error in the range of the number of knots used, fol-
lowed by the ConFit and LinFit methods. The NKTP and
AdpCrv methods have the highest error for most knot num-
bers. Since the sampling of the input dataset is uniformly
randomized, and not proportional to the amount of variation
in the data, the NKTP method does not allocate more knots
near the sharp dip at 0.2 parameter.

The third dataset shown in Figure 16a contains 704 points
and is a 1D slice of a 3D dataset, measuring the magni-
tude of the velocity of a turbulent combustion simulation [3].
This dataset contains sharper features compared with previ-
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Figure 18: Methods comparison for 601 parametric points sampled from a random NURBS curve.

ous datasets. Figures 16b and 16c show the approximation
error for all the methods. For this dataset, our method and
the IKI method achieve similar error for the same number
of knots. Because of the higher frequency variation present
in this dataset, the derivative is noisier compared with the
previous datasets. The IKI method tends to perform better
with less smooth datasets thanks to its localized refinement
step. LinFit also achieves one of the lowest approximation
errors at higher knot count, as it captures the sharper turns.
ConFit achieves a low error with fewer knots, but the de-
crease in error slows as more knots are added to locations
with highly varying third derivatives but already low error.
AdpCrv does not converge as quickly as the other methods
due to the more complex nature of the dataset, since more
evenly spread knots are needed to prevent an excessive con-
centration of knots at high curvature locations. The NKTP
method lowers the error at a steady rate with more knots
added because of the relatively even detail distribution of
the dataset across the parameter space.

The fourth dataset shown in Figure 17a is a large ran-
domly generated NURBS dataset with 4000 points and 80
random knots, control points, and weights. The randomized
nature and the large number of complex regions represent
complicated and unpredictable datasets found in real-world
applications. Figures 17b and 17c show the approximation
error for all the methods. Overall, our method achieves the
lowest approximation error across all number of knots, fol-
lowed by the IKI method. The AdpCrv and NKTP methods
result in the highest RMS and maximum error.
5.1.2. Parametric datasets

The datasets shown in Figures 18-21 are curves in 2 di-
mensions, parameterized by arc length. Methods LinFit and
ConFit are described for only 1D datasets, and thus are not
used to evaluate these parametric curves.

The dataset shown in Figure 18a is an order-7 NURBS
curve generated using random control points and weights,
and 32 random knots. 601 points are uniformly sampled in
the parameter space. Figures 18b and 18c show the approx-
imation error for this dataset across all the methods. Our
method achieves the lowest error for both maximum and RMS
errors, followed by DOM and AdpCrv methods.

The dataset shown in Figure 19a is sampled from the
parametric equations x(u) = u(cos(2u) + 0.5) and y(u) =
u sin(u). 401 points are sampled along the arc length, with
higher sampling density where curvature is higher. The sam-
pling spacing contains a small amount of randomized vari-
ation, as shown in the zoomed-in plot. Figures 19b and 19c
show the approximation error for this dataset for all the meth-
ods. Our method achieves the lowest RMS error, but has
higher maximum error in a few cases compared to the DOM
method. Method AdpCrv has high error for a low number
of knots, but achieves comparatively lower error with 50 or
more knots. Even though higher sampling density at high
curvature benefits the NKTP method, it produces the high-
est error in most cases.

The data of Figure 20a is a butterfly contour taken from
[31]. 600 points are uniformly sampled in parameter space.
It is a more challenging dataset than the cases considered so
far, with sharper curves and corners. Our method achieves
the lowest error for all numbers of knots, followed by the
DOM and AdpCrv methods. The heuristic approach of the
DOM method hones in on the sharper corners for knot place-
ment, effectively reducing the approximation error. The IKI
method has higher error with the same number of knots be-
cause the insertion method always splits at the middle of the
segment, which is less effective for this dataset due to the
localized high curvature. The NKTP method achieves the
highest approximation error among all the methods.

Figure 21a shows the last dataset, a parametric curve
with 4000 points sampled from a NURBS curve generated
using 70 random knots, control points, and weights. This
dataset is larger and more complex than the other paramet-
ric datasets. Method DOM achieves lower maximum error
for low number of knots, but for higher number of knots, our
method reaches lower maximum error. For RMS error, our
method maintains the lowest error compared with all other
methods. The IKI method reduces both maximum and RMS
errors consistently as more knots are added, but it does so at a
lower rate than DOM and our method. Method AdpCrv does
not reduce either error measure beyond around 300 knots.
The NKTP method has the highest error compared with all
other methods.

First Author et al.: Preprint submitted to Elsevier Page 11 of 15



Fast Automatic Knot Placement for Accurate B-spline Curve Fitting

0 0.2 0.4 0.6 0.8 1

X-dimension

0

0.2

0.4

0.6

0.8

1

Y
-d

im
e
n
s
io

n

0.5 0.55 0.6

0.18

0.2

(a) Input parametric data

20 30 40 50 60 70 80 90 100

Number of knots

10-4

10-3

10-2

M
a
x
 E

rr
o
r

Our method

NKTP

IKI

DOM

AdpCrv

(b) Max error

20 30 40 50 60 70 80 90 100

Number of knots

10-5

10-4

10-3

10-2

R
M

S
 E

rr
o
r

Our method

NKTP

IKI

DOM

AdpCrv

(c) Root mean squared error

Figure 19: Methods comparison for 401 points nonuniformly sampled from a parametric function.
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Figure 20: Methods comparison for 600 points sampled from a butterfly contour taken from [31].

5.1.3. Discussion of each method
In general, our knot placement method allocates more knots
to segments with higher information content, resulting in
reduced approximation error. In most cases, our method
achieves lower approximation error with the same number
of knots compared with other methods.

The NKTP method has the highest error for most cases
since it ignores the features of the input dataset. The IKI
method, due to its adaptive refinement strategy, achieves com-
paratively lower error in the 1D cases. In particular in the
simulation dataset, IKI yields results comparable to our method,
focusing on the locations where more knots are needed to

reduce error. Due to the chord-length parameterization for
curves in 2D, data points may be grouped closely together in
a small parameter domain, requiring more refinement steps
and knots to improve the approximation in those regions.

Method LinFit is described only for 1D datasets, and is
thus not used on the three parametric datasets. It allocates
more knots at locations with highly varying second deriva-
tives to capture the detail in the data, but in some cases could
result in redundant knots at the locations with highly varying
second derivatives. The method’s accuracy directly depends
on the fitting parameter used, although the relationship be-
tween fitting parameter and approximation error is unclear.
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Figure 21: Methods comparison for a randomly generated NURBS parametric curve with 4000 points.

First Author et al.: Preprint submitted to Elsevier Page 12 of 15



Fast Automatic Knot Placement for Accurate B-spline Curve Fitting

0 100 200 300 400 500 600 700 800

Number of knots

10-1

100

101

102

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Our method

NKTP

IKI

LinFit

ConFit

AdpCrv

Figure 22: Timing vs. number of knots for 1D data with 4000
points

ConFit is described for 1D datasets only, and is not used
on the three parametric datasets. This method may perform
better in cases where fewer knots are used to capture the gen-
eral shape of noisy data or data with few samples, as the cu-
bic smoothing spline used for calculating derivatives filters
out the noise in the data. In the present context, however,
ConFit does not perform as well as other methods because
our test datasets are free of noise, and we aim to approximate
to a low error tolerance.

Method AdpCrv, being curvature based, achieves lower
error on smooth parametric datasets. For datasets with higher
curvature, the method can allocate too many knots in the
high curvature regions. The simulation dataset shown in Fig-
ure 16a has many curvature peaks, making it a challenging
dataset for AdpCrv method.

The DOM method is described only for parametric curves,
and is not evaluated with the three 1D datasets. The method’s
error-driven knot placement reduces the maximum error quickly
for low knot count. However, because existing dominant
points are not updated, and there must be a minimum of three
input data points between any dominant point pair, the max-
imum error can plateau as more knots are added.
5.2. Timing

We compare the timing of each methods, using a Desk-
top computer with a 3.3GHz Intel i7-3960X CPU and 32GB
RAM. For each parameter used in each method, the timing
result reported is the median of ten runs.

Our implementations of the various methods (including
our own) are not optimized, thus the resulting timing infor-
mation is meant to show relative performance for compari-
son only.

For the algorithms using 1D data, we use the randomly
generated dataset shown in Figure 17a with 4000 points. The
summary of the resulting timing for all methods on 1D data
is shown in Figure 22.

Algorithms operating on parametric curves are compared
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Figure 23: Timing vs. number of knots for parametric data
with 4000 points

with the randomly generated dataset shown in Figure 21a,
also with 4000 points. Figure 23 shows the timing results
for the parametric data.

Since we start with the minimum number of knots for
method IKI, it takes many iterations and performs as many
least squares solves. We only count the time for iterations
that occur after the knot vector becomes non-uniform, for
a fairer comparison, which amounts to starting the iterative
process with a uniform knot vector.

The fastest run times per knot inserted is obtained with
NKTP and our method, as no iterations are needed. These
methods are (n) where n is the number of input points.

The run times of globally iterative methods (such as DOM
and IKI) and locally iterative methods (AdpCrv method and
LinFit) are affected by their convergence, which is data de-
pendent. The iterative IKI method solves a linear least squares
system at each iteration, and thus requires more time to reach
the desired result. The LinFit method fits a piecewise lin-
ear function to data points during its local iteration, which
we implemented using linear programming. Using a differ-
ent fitting criterion may improve the speed of the method.
Method ConFit performs a neighboring knot adjustment step
after each newly inserted knot, which can be time consum-
ing. Method DOM inserts one knot and solves a linear sys-
tem at each iteration, hence it is the slowest of all consid-
ered methods. We implemented the method as described in
the paper, but the timing may be improved by adding all the
knots for all segments above the error threshold in an iter-
ation. At each iteration, the linear system changes by only
a few columns, which could also be leveraged by using an
iterative solver to reduce the execution time further. The run
time of AdpCrv method depends heavily on the number of
local adjustment iterations, which is, in turn, data dependent.
The method is likely to perform faster with smoother data as
fewer adjustment iterations are needed. This can be seen in
the comparison of AdpCrv method between 1D and data pa-
rameterized by arc length, which result in lower curvature.
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This can explain the faster run time in the parametric case
than in the 1D case.

6. Conclusion and Discussion
We introduced a novel knot placement optimization method

that analyzes high-order derivatives of the input data, and
generates a knot placement such that the resulting least squares
fit has low error. We demonstrated our method’s effective-
ness by comparing it to a number of state-of-the-art knot
placement methods, and showed that our method can achieve
comparable or higher approximation accuracy using fewer
knots for a range of 1D and parametric datasets. Our method
is also computationally inexpensive, with run time scaling
linearly with the dataset size. In our experiments, our method’s
execution times were on par with the fastest methods we
evaluated.

A challenge for our method is noise in the data, due to the
need to calculate higher-order derivatives, which tend to am-
plify the noise. Methods for computing derivatives of noisy
data, e. g., based on an intermediate reconstruction with a
smoothing B-spline, will need to be assessed in this context
to extend this method for data containing noise.

The regression analysis to determine the number of knots
for a given error tolerance is a rough estimate for datasets
with a certain convergence rate. Further study can be done
on analyzing the smoothness of the dataset to determine its
potential convergence rate given a selected B-spline order.

Additional avenues for future work include approximat-
ing multidimensional and time-dependent data. This may in-
troduce new challenges depending on how the B-spline basis
is extended to multiple dimensions.
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